

Novel HFIAP-1 Mutant Antimicrobial Peptide Identified as a Potential Inhibitor of Extended-Spectrum β -Lactamases in *Escherichia coli*: An In-silico Study

Elizabeth Annie George^{1,2}, Aniket Naha³, Anand Anbarasu^{1,4}, Sudha Ramaiah^{1,2*}

¹Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology, Vellore – 632014, India

²Department of Bio-Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore – 632014, Tamil Nadu, India

³Medical Biotechnology and Computational Drug Designing Laboratory, Pushpagiri Medical Society, Tiruvalla – 689101, Kerala, India

⁴Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore – 632014, Tamil Nadu, India

Email : elizabeth.annie2024@vitstudent.ac.in

Abstract

Extended-spectrum β -lactamases (ES β Ls) produced by *Escherichia coli* represent a critical threat to global antimicrobial therapy, significantly undermining the effectiveness of conventional β -lactam– β -lactamase inhibitor combinations. In the present study, we employed a computational drug discovery approach to identify novel peptide-based β -lactamase inhibitors from a curated library of antimicrobial peptide (AMP) mutants exhibiting enhanced antibacterial potency (7–16%) compared to their parent sequences. Five selected peptides and their mutants were systematically analyzed for their physicochemical, pharmacokinetic, and immunogenic properties. Molecular docking identified the mutant HFIAP-1_M5 (L33K–W7C–N34C) as a promising inhibitor, predicted to interact with approximately 82% of the analyzed ES β Ls spanning classes A–D. HFIAP-1_M5 demonstrated superior binding affinities (0.2–12% improvement) relative to its parent peptide, forming stable hydrogen bonds, van der Waals interactions, and salt bridges with key catalytic residues within the β -lactamase active sites. All-atom molecular dynamics simulations, along with principal component and free energy landscape analyses, confirmed the conformational stability of the ES β L–HFIAP-1_M5 complexes with minimal residue–

level fluctuations. Binding free energy and per-residue decomposition analyses further revealed critical interactions contributing to complex stabilization. Overall, this study highlights HFIAP-1_M5 as a potent peptide-based β -lactamase inhibitor with strong potential for use in combination therapy to restore the efficacy of β -lactam antibiotics against multidrug-resistant *E. coli*, upon experimental validation.

Keywords: Antimicrobial resistance, Antimicrobial peptides, *Escherichia coli*, Extended-spectrum β -lactamases