

Genome-guided exploration of marine *Streptomyces* sp. and *Nocardiopsis* sp. for their biosynthetic and drug-development potential

Santhiya Vijayakumar^{1,2*}, Hithesh Kumar^{1,2}, Neha Shintre³, Vaijayanti Tamhane⁴, Neelima Deshpande⁵, Tushar Joshi^{1,6}, Shalini Mathpal^{1,2}, Anand Anbarasu^{1,6}, Sudha Ramaiah^{1,2}

¹Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore - 632014

²Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore - 632014

³Content Writer - Biology, JoVE, India

⁴Institute of Bioinformatics & Biotechnology, Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India

⁵Abasaheb Garware College, Pune, Maharashtra, India

⁶Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore - 632014

Email: santhiya.v2024@vitstudent.ac.in

Abstract

Actinomycetes are prolific producers of bioactive natural compounds, making them valuable targets for discovering novel therapeutics in the face of rising antimicrobial resistance. This study investigated the biosynthetic potential of Actinomycetes isolated from marine sponge and sediment samples collected along the west coast of India. Whole-genome sequencing of six isolates generated high-quality Illumina assemblies, and BLAST- and phylogeny-based analyses identified A01 and A96 as *Nocardiopsis* sp., while A03, A45, A57, and A90 grouped with *Streptomyces*. Genome mining revealed that *Streptomyces* sp. A57 carried the highest number of biosynthetic gene clusters (28 BGCs). Terpene clusters were detected in all *Streptomyces* genomes, and the ectoine was conserved across both genera. Several predicted BGCs showed low similarity to known clusters, indicating the presence of unexplored biosynthetic pathways with potential for novel metabolite production. These findings highlight the rich genomic diversity of marine Actinomycetes and underscore their promise as reservoirs for future drug discovery. Further work integrating genomics with metabolomics will aid in experimentally characterizing these predicted metabolites.

Keywords: Actinomycetes, Secondary metabolites, *Streptomyces*, *Nocardiopsis*, Bioactive compounds